

MK48S80

VERY FAST CMOS 8K x 8 CACHE TAGRAM

- 8K x 8 CMOS SRAM with ON BOARD COMPARATOR
- ADDRESS to COMPARE ACCESS TIME: 15, 17, 20, 25ns
- FAST CHIP SELECT COMPARE ACCESS: 8ns
- MATCH OUTPUT with FAST TAG DATA to COMPARE ACCESS of: 12, 15ns Max
- STATIC OPERATION-NO CLOCKS or TIMING STROBES REQUIRED
- FULL CMOS for LOW POWER OPERATION.
- TOTEM-POLE MATCH OUTPUT
- THREE-STATE OUTPUTS
- 28 PIN 300 MIL DIP & 28 PIN 300 MIL SOJ
- HIGH SPEED ASYNCHRONOUS RAM CLEAR

TRUTH TABLE

W	S	IJ	RS	Mode	DQ	Match	
Х	Х	Х	L	Reset Clear	High-Z	High	
Х	Н	Х	н	Deselect	High-Z	High	
н	L	н	н	Miss	D _{IN}	Low	
н	L	н	н	Match	D _{IN}	High	
н	L	L	н	Read	Q _{OUT}	High	
L	L	Х	н	Write	D _{IN}	High	

PIN NAMES

A0 - A12	Address Inputs			
DQ0 - DQ7	Data Inputs / Outputs			
МАТСН	Comparator Output			
ร	Chip Select			
G	Output Enable			
\overline{W}	Write Enable			
RS	Reset Flash Clear			
V _{CC} , GND	5 Volts, Ground			

Figure 1. Pin Connection

RS	Ь	1	$\overline{\mathbf{U}}$	28	Դ	Vee
A12	٦	2		27	6	w
Α7	q	3		26	þ	МАТСН
A6	q	4		25	þ	A8
A5	q	5		24	þ	A9
A4	q	6		23	þ	A11
A3	q	7	MIZARCON	22	þ	G
A2	q	8	WK4030U	21	þ	A10
A1	q	9		20	þ	Ŝ
A0	q	10		19	þ	DQ7
DQO	q	11		18	þ	DQ6
DQ1	q	12		17	þ	DQ5
DQ2	q	13		16	þ	DQ4
GND	q	14		15	þ	DQ3

DESCRIPTION

The MK48S80 is a 65,536 fast static cache TAGRAM[™] organized as 8K x 8 bits. It is fabricated using SGS-THOMSON's low power, high performance HCMOS4 technology. The MK48S80 features fully static operation requiring no external clocks or timing strobes. The device requires a single 5V supply and is fully TLL compatible. The MK48S80 has a fast Chip Select control for high speed operation to the Match Compare valid, and device select/deselect operations. Additionally, the MK48S80 provides a Reset Clear, and MATCH compare pin. The Reset Clear input provides an asynchronous RAM clear control which clears all internal RAM bits to zero. The MATCH output is in a totem-pole configuration to minimize swtiching delays associated with open-drain devices. During a MATCH compare cycle, an on-board 8-bit comparator compares the Data Inputs (8-bit TAG) at the specified address index (A0-A12) to the internal RAM data. If a miss condition exists, where at least one bit of TAG data does not match the internal RAM, then the MATCH output issues a LOW miss signal.

OPERATIONS READ MODE

The MK48S80 is in the read mode whenever Write Enable (\overline{W}) is HIGH with Output Enable (\overline{G}) LOW, and Chip Select (\overline{S}) is active. This provides access to data from eight of 65,536 locations in the static memory array. The unique address specified by the 13 Address Inputs defines which one of the 8192 8-bit bytes is to be accessed. Valid data will be available at the eight Output pins within t_{AVQV} after the last stable address, providing \overline{G} is LOW, and \overline{S} is LOW. If Chip Enable or Output Enable access times are not met, data access will be measured from the limiting parameter (t_{SLQV} or t_{GLQV}) rather than the addresses. The state of the DQ pins is controlled by the \overline{S} , \overline{G} , and \overline{W} control signals. Data out may be indeterminate at t_{SLQX} and t_{GLQX}, but data line will always be valid at t_{AVQV}.

Symbol		Parameter	15		17		20		25		Unit	Note
Std	Alt	i di dineter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	onic	Note
t _{AVAV}	t _{RC}	Read Cycle Time	20		20		20		25		ns	
tAVQV	t _{AA}	Address Access Time		20		20		20		25	ns	1
tslqv	t _{CSA}	Chip Select Access Time		15		15		15		15	ns	
t _{GLQV}	t _{OEA}	Output Enable Access Time		10		10		10		15	ns	1
t _{SLQX}	t _{CSL}	Chip Select to Output Low-Z	0		0		0		0		ns	
tGLQX	toel	Output Enable to Low-Z	0		0		0		0		ns	
tsнqz	tcsz	Chip Select to High-Z		9		9		9		9	ns	
t _{GHQZ}	toez	Output Enable to High-Z		8		8		8		8	ns	2
taxqx	t _{OH}	Output Hold From Address Change	3		3		3		3		ns	1

READ CYCLE TIMING - Electrical Characteristics and Recommended AC Operating Conditions (0 °C \leq T_A \leq +70 °C; V_{CC} = 5V \pm 5%)

Note: Chip Select and Output Enable are presumed Valid, $\overline{W} = V_{IH}$

Figure 3. Read Timing No. 2 (W = VIH)

WRITE MODE

The MK48S80 is in the Write mode whenever the \overline{W} and \overline{S} pins are LOW. Chip Select or \overline{W} must be inactive during Address transitions. The Write begins with the concurrence of Chip Select being active with \overline{W} LOW. Therefore address setup times are referenced to Write Enable and Chip Select as t_{AVWL} and t_{AVSL}, and is determined to the latter occurring edge. The Write cycle can be terminated

by the earlier rising edge of \overline{S} or \overline{W} . If the output is enabled ($\overline{S} = LOW$, $\overline{G} = LOW$), then \overline{W} will return the outputs to high impedance within t_{WLQZ} of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data-in must be validfor t_{DVWH} to the rising edge of Write Enable, or to the rising edge of \overline{S} , whichever occurs first, and remain valid t_{WHDX} after the rising edge of \overline{S} or \overline{W} .

WRITE CYCLE TIMING - Electrical Characteristics and Recommended AC Operating Conditions (0 °C \leq T_A \leq +70 °C; V_{CC} = 5V \pm 5%)

Symbol		Parameter	1	5	17		2	0	25		Unit	Note
Std	Alt	Falameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Onit	NOLE
t _{AVAV}	t _{WC}	Write Cycle Time	20		20		20		25		ns	
t _{AVWL}	t _{AS}	Address Set-up to Write Enable Low	0		0		0		0		ns	
t _{AVSL}	t _{AS}	Address Set-up to Chip Select	0		0		0		0		ns	
t _{AVWH}	t _{AW}	Address Valid to End of Write	15		15		15		20		ns	
twlwh	twew	Write Pulse Width	15		15		15		20		ns	
t _{WHAX}	t _{AH}	Address Hold Time After End of Write	0		0		0		0		ns	
t _{SLSH}	t _{CSW}	Chip Select to End of Write	15		15		15		20		ns	
t _{SHAX}	t _{WR}	Write Recovery Time to Chip Select	0		0		0		0		ns	
t _{DVWH}	t _{DW}	Data Valid to End of Write	10		10		10		13		ns	
twHDX	t _{DH}	Data Hold Time	0		0		0		0		ns	
t _{WHQX}	t _{WEL}	Write High to Output Low-Z (Active)	0		0		0		0		ns	2
t _{WLQZ}	t _{WEZ}	Write Enable to Output High-Z		5		5		5		5	ns	2

Figure 4. Writing Timing No. 1 (Write Control)

Figure 5. Writing Timing No. 2 (Chip Select Control)

COMPARE MODE

The MK48S80 is in the Compare mode whenever \overline{W} and \overline{G} are HIGH provided Chip Select (\overline{S}) is active LOW. The 13 index address inputs (A0-A12) define a unique location in the static RAM array. The data presented on the Data Inputs (DQ0-DQ7) as Tag Data is compared to the internal RAM data as specified by the index. If all bits are equal, then a hit condition occurs (MATCH = HIGH). When at least one bit is not equal, then MATCH will go LOW signifying a miss condition. The MATCH output will be valid tAVMV from stable address, or tTVMV from valid Tag Data when S is LOW. Should the address be stable with valid Tag Data, and the device is deselected (\overline{S} = HIGH), then MATCH will be valid t_{SLMV} from the falling edge of Chip Select (\overline{S}). When executing a write-to-compare cycle ($\overline{W} = LOW, \overline{G}$ = LOW or HIGH), MATCH will be valid twhet or t_{GHMV} from the latter rising edge of \overline{W} or \overline{G} respectively.

RESET MODE

The MK48<u>S80</u> allows an asynchronous reset clear whenever \overline{RS} is LOW regardless of the logic state on the other input pins. Reset clears all internal RAM bits (65,536 bits) to a logic zero as long as t_{RSL-RSH} is satisfied. The state of the outputs is

determined by the control logic input pins \overline{S} , \overline{W} , and \overline{G} during reset (see Truth Table). The MATCH output will go HIGH t_{RSL-MH} from the falling edge of RS, and all inputs will not be recognized unit t_{RSH-AV} from the rising edge of reset (RS).

APPLICATION

The MK48S80 operates from a 5V supply. It is compatible with all standard TTL families on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it, particularly TTL devices. A pull-up resistor is also recommended for the \overline{RS} input. This will ensure that any low going system noise, coupled onto the input does not drive RS below VIH minimum specifications. This will enhance proper device operation, and avoid possible partial flash clear cycles. Additionally, because the outputs can drive rail-torail into high impedance loads, the MK48S80 can also interface to 5V CMOS on all inputs and outputs. The MK48S80 provides the system designer with 64K fast static memory, a MATCH out-put, and a BYTEWIDE on-board comparator, all in one chip. The MK48S80 compares the contents of addressed RAM locations to the current data inputs. A logic one "1" output on the MATCH pin indicates that the input data and the RAM data

Symbol		Parameter	15		17		20		25		Unit	Note
Std	Alt	Faiametei	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Onit	NOLE
t _{AVMV}	t _{AMA}	Address to MATCH Valid		15		17		20		25	ns	1
t _{SLMV}	tcsм	Chip Select to MATCH Valid		8		8		10		15	ns	1
tsнмн	t _{CSMH}	Chip Deselect to MATCH High		5		5		8		12	ns	1
t _{TVMV}	t _{DMA}	Tag Data to MATCH Valid		12		12		12		15	ns	1
t _{GHMV}	tоем	G High to MATCH Valid		10		10		10		15	ns	1
t _{GLMH}	tоемн	G Low to MATCH High		10		10		10		12	ns	1
twnm∨	t _{WEM}	W High to MATCH Valid		10		10		10		20	ns	1
twlmн	tweмн	W Low to MATCH High		10		10		10		15	ns	1
t _{MXAX}	t _{MHA}	MATCH Hold From Address	1		1		1		1		ns	1
t _{MXTX}	t _{MHD}	MATCH Hold From Tag Data	0		0		0		0		ns	1

COMPARE CYCLE TIMING - Electrical Characteristics and Recommended AC Operating Conditions (0 °C \leq T_A \leq +70 °C; V_{CC} = 5V \pm 5%)

RESET CYCLE TIMING - Electrical Characteristics and Recommended AC Operating Conditions (0 °C \leq TA \leq +70 °C; V_{CC} = 5V \pm 5%)

Syml	bol	Parameter		15 17		7 2		20		25	
Std	Alt	Farameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Onit
t _{RSC}	t _{RC}	Flash Clear Cycle Time	80		80		80		80		ns
t _{RSL-AX}	t _{RSX}	Reset Clear (RS) to Inputs Don't Care	0		0		0		0		ns
t _{RSH-AV}	t _{RSV}	RS to Inputs Valid	5		5		5		5		ns
t _{RSL-RSH}	t _{RSP}	Reset (RS) Pulse Width	75		75		75		75		ns
t _{RSL-MH}	t _{RSM}	Reset (RS) to MATCH High		15		15		15		15	ns

Figure 6. Match Compare Timing

match. Conversely, a logic zero "0" on the MATCH pin indicates at least one bit of difference between the RAM contents and the input TAG, generating a miss.

The MATCH output is constructed with a totempole arrangement. The totem-pole configuration allows the designer to minimize switching delays and noise problems associated with open-drain devices. In a cache subsystem, the MATCH signal provides the processor or CPU with the necessary information concerning wait state conditions. The purpose of a cache subsystem is to maintain a duplicate copy of portions of the main memory. When a valid match occurs, the system processor uses data from the fast cache memory, and avoids longer cycles to the main memory. Therefore, implementing cache subsystems with the MK48S80, and providing good hit or match ratio designs will enhance overall system performance. Because high frequency current transients will be associated with the operation of the MK48S80, power line inductance must be minimized on the circuit board power distribution network. Power and ground trace gridding or separate power planes can be employed to reduce line inductance. Though often times not thought of as such, the traces of a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

Figure 7. Reset Timing

Note: \overline{G} = High

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VI	Voltage on any Pin Relative to Ground	–0.3 to 6	V
T _A	Operating Temperature	0 to 70	°C
T _{STG}	Storage Temperature	–65 to 150	°C
PD	Power Dissipation	1	W
lout	Output Current	50	mA

Note: This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS (0 °C \leq T_A \leq +70 °C)

Symbol	Parameter	Min.	Max.	Unit	Notes
Vcc	Supply Voltage	4.75	5.25	V	3
GND	Ground	0	0	V	3
V _{IH}	Logic 1 All Inputs	2.2	V _{CC} + 0.3	V	3
VIL	Logic 0 All Inputs	-0.3	0.8	V	3

DC ELECTRICAL CHARACTERISTICS (0 °C \leq T_A \leq +70 °C; V_{CC} = 5V \pm 5%)

Symbol	Parameter	Min.	Max.	Unit	Notes
Icc1	Average V _{CC} Power Supply Current		160	mA	4
lı∟	Input Leakage Current	-1	1	μA	5
IOL	Output Leakage Current	-5	5	μA	6
V _{OH}	Logic 1 Output Voltage (I _{OUT} = -4 mA)	2.4		μΑ	3
V _{OL}	Logic 0 Output Voltage (I _{OUT} = 8 mA)		0.4	V	3

CAPACITANCE ($T_A = 25 \ ^{\circ}C$, f = 1MHz)

Symbol	Parameter	Max.	Unit	Notes
C _{IN}	Capacitance on all Input pins	4	pF	7
Соит	Capacitance on Q Output pins	10	pF	7

AC TEST CONDITIONS

Parameter	Value	Unit
Input Levels	0 to 3	V
Transition Time	1.5	ns
Input and Output Signal Timing Reference Level	1.5	V
Ambient Temperature	0 to 70	°C
Supply Voltage	$5\pm5\%$	V

Figure 8. Equivalent Output Load Circuits

Notes :

- 1. Measured with load shown in Figure 8A.
- 2. Measured with load shown in Figure 8B.
- 3. All voltages referenced to GND.
- 4. I_{CC1} is measured as the average AC current with V_{CC} = V_{CC} (max) and with the outputs open circuit. t_{AVAV} = t_{AVAV} (min) duty cycle 100%.
- 5. Input leakage current specifications are valid for all V_{IN} such that 0 V < V_{IN} < V_{CC} . Measured at V_{CC} = V_{CC} (max).
- 6. Output leakage current specifications are valid for all V_{OUT} such that 0 V < V_{OUT} < V_{CC} , $\overline{S} = V_{IH}$ and V_{CC} in valid operating range.
- 7. Sampled, not 100% tested.

ORDERING INFORMATION SCHEME

For a list of available options of Package and Speed, refer to the current Memory Shortform catalogue. For further information on any aspect of this device, please contact SGS-THOMSON Sales Office nearest to you.

			•	· ·			
Symb	mm			inches			
	Тур	Min	Max	Тур	Min	Max	
А			4.57			0.180	
A1		0.38	_		0.015	-	
A2		3.05	3.56		0.120	0.140	
В		0.38	0.53		0.015	0.021	
B1		1.14	1.27		0.045	0.050	
С		0.20	0.30		0.008	0.012	
D		34.54	34.80		1.360	1.370	
E		7.62	8.26		0.300	0.325	
E1		7.11	7.49		0.280	0.295	
e1	2.54	-	-	0.100	-	-	
eA	7.62	-	-	0.300	-	-	
eB			10.92			0.430	
L		3.18	3.43		0.125	0.135	
Ν	28			28			

PSDIP28 - 28 pin Plastic Skinny DIP, 300 mils width

PSDIP28

Symb	mm			inches		
	Тур	Min	Max	Тур	Min	Мах
А		3.05	3.56		0.120	0.140
A1		0.71	0.91		0.028	0.036
A2		2.29	2.39		0.090	0.094
В		0.36	0.48		0.014	0.019
D		17.81	18.06		0.701	0.711
E		7.42	7.59		0.292	0.299
е	1.27	-	_	0.050	-	_
eA		6.65	6.91		0.262	0.272
Н		8.51	8.81		0.335	0.347
Ν	28			28		
СР			0.10			0.004

SOJ28 - 28 lead Plastic Small Outline J-lead, 300 mils

SOJ28

Drawing is out of scale

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

[™] TAGRAM is a trademark of SGS-THOMSON Microelectronics

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

